A Regional Climate Model Evaluation System based on Satellite and other Observations for Application to CMIP and Climate Assessment Downscaling

D. E. Waliser1, P. Lean1, J. Kim2, C. Goodale1, A. Hart1, C. Mattmann1,3 and P. Zimdars1

1Jet Propulsion Laboratory, California Institute of Technology; 2 JFRESSE, UCLA; 3University of Southern California

For more information, please email duane.waliser@jpl.nasa.gov

Background: Why model evaluation?
• Climate model projections play a crucial role in developing plans to mitigate and adapt to climate variations and change for sustainable developments.
• Assessing model performance is an important step in linking climate simulation quality to projection uncertainty and then to climate change impacts assessments.
• Uncertainties propagate according to model hierarchy
• Bias correction is based on model evaluation
• Determination of the weights in multi-model ensemble
• Model evaluation is also a fundamental part of model development and improvement (Figure 1).

Regional Climate Model Evaluation System (RCMES):
• Provide a fast, flexible, comprehensive system to allow easy comparison of climate models with observations.
• Enable researchers to handle a large volume of data and reduce time taken for model evaluation studies from weeks to hours.
• Help model developers with cutting-edge observations and diagnostics to evaluate and improve their models.
• Help end-users understand the uncertainties in climate projections for the regions of interest.
• Efficient: Fast access to reference data and toolkit
• User Friendly: Intuitive and transferrable GUI
• Flexible: Cloud-based architecture
• Expandable:
 • Easy to add new data/analysis tool
 • Scalable storage solution

RCMES overview:
• Large database (MySQL + Apache Hadoop):
 • Multiple reference datasets from:
 • Satellite remote sensing
 • TRMM (1998-2010)
 • AIRS (2002-2010)
 • MODIS Cloudiness
 • Assimilation
 • SWR (SNODAS; JPL&U. Colorado)
 • Reanalysis
 • ERA-Interim (e.g. U(p), V(p), q(p), T(p), SLP)
• Extractors:
 • Process data from various data formats into a common database schema.
• Library of statistical metrics:
 • Python routines with plug-ins in other languages (Fortran, c, idl) to calculate and plot standard metrics of model performance. (e.g. Bias, RMS error, Anomaly Correlation, Probability Distribution Functions).

Future works:
1. Add additional reference datasets (e.g., other reanalysis, satellite data, in-situ)
2. Examine remote sensing data for evaluating fine-scale (-cokm) regional climate data.
3. Additional metrics calculations and visualizations
4. Improve GUI
5. Use the system to evaluate regional/global climate models associated with National Climate Assessment (NCA), NARCCAP, CMIP5 and CORDEX (Africa and Asia).

Reference