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Summary of Sections 1 & 2

Recent research activities have confirmed that the increase in the global-mean surface
temperature in the 20" century is caused by the combinations of natural variability and
the anthropogenic forcing by the emissions of GHG from industrial activities.

Developing plans to adapt to and mitigate the impact of climate change on regional
sectors need climate data for future periods.

Future climate data projected by climate models contain uncertainties primarily from
1. Projecting human activities that emit GHGs
2. Incompleteness of climate model formulations

The uncertainty due to future industrial activities is very difficult to estimate.

 |PCCintroduced multiple future emissions scenarios as a guide for AOGCM
experiments.

The biases due to model formulations may be quantified in controlled experiments.

* The climate model related uncertainties may be dealt with via bias correction,
multi-model ensemble or both, based on rigorous model evaluation.



Section 3. Uncertainties in forcing data
Assessment model hierarchy

Assessments of future water resources are generally based on a nested modeling system
illustrated in Figure 3.1:

* GCMs -> RCMs/Statistical models generate future regional climate scenarios.

* The projected data are processed to assess biases and apply correction schemes

* The bias-corrected climate data drive hydrology models to calculate reservoir inflows.
* The reservoir inflow scenarios are used to run water resources assessment models.

* The water resources scenarios are used to develop management plans.

Figure 3.1. A schematic illustration of the data
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Section 3. Uncertainties in forcing data

Met data preparation
* Transferring the gridded climate model data onto a watershed is the first step in assessing water
resources using a bulk hydrology model that runs on watershed-mean met data (Figure 3.2)
1. Overlay model grid over the watershed area.

2. Calculate the percentage of each grid box contained within the watershed area. This is the weighting factor for
calculating the area-mean meteorological data.

3. Using the weights, the watershed-mean value of a variable P is calculated as: F=(w,:,P,,,)/Ew,,

G

Area mapping

| | The shaded area is the 0.5°-resoln
Map the watershed area onto the RCM RCM grid boxes that are entirely or
domain (Kim et al. 2000, J. Hydromet.) partially included in the basin.

Figure 3.2. Calculation of area-mean data for an irregularly-shaped watershed from gridded climate model data.

* Next Steps:

1. Prepare a watershed-mean time series from multiple regional climate models in the
North American Regional Climate Change and Assessment Project (NARCCAP) hindcast.

Evaluation of the simulated watershed-mean time series
Bias correction of the forcing time series.



Section 3. Uncertainties in forcing data
Evaluation of the basin-mean time series and their climatology
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Figure 3.3. (a) Daily precipitation time series for 1990-2003 and annual cycle in (b) daily climatology and (c) monthly climatology.
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By projecting the model data onto the watershed area, the watershed-mean daily precipitation time
series are constructed for the reference (NARR) and model data including model ensemble (Fig.
3.3a).

The daily time series are further processed to construct annual cycle in terms of daily (Fig. 3.3b) and
monthly (Fig. 3.3c) means — quick examination of model errors in climatology. These are useful for
quick visual inspection of the model data against the reference data.

— Fig. 3.3b and 3.3c show that all models depict the observed annual cycle but contain biases
— The model errors in simulating the annual cycle vary according to months/seasons.
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Section 3. Uncertainties in forcing data

PDF, cPEF and Quantile plots
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Probability distribution functions of the observed and simulated precipitation are useful for
examining the statistical characteristics of the simulated variables against the observation.

This examples show that RCMs tend to overestimate both extremely light or heavy precipitation
events (in the both tails of PDFs) compared to the NARR data.

Quantile plot is often more useful than PDF or cPDF plots for depicting data distribution, especially
for bias correction using quantile mapping methods.



Section 3. Uncertainties in forcing data
Evaluation of the raw time series
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Scatter diagrams visualize the one-to-one correspondence between the reference and
simulated data, a very intuitively way of comparing the model data with the reference data.

The correlation coefficients and RMSE between the observed and model data provides a
guantitative measure of the closeness of the simulated time series to the reference data.



Section 3. Uncertainties in forcing data
Evaluation of the temporal variability of multiple model time series
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Figure 3.5b. Evaluation of the temporal
variability of the simulated precipitation
using a Taylor diagram (right).

The temporal variability of the simulated
time series and their equal-weight multi-
model ensemble (MENS) is evaluated in
terms of standardized deviation and
correlation coefficient with the reference
data (NARR).

The resulting Taylor diagram shows that:

— 3 out of 4 RCMs (CRCM, ECPC, HRM3)
and mENS closely simulate the
temporal standard deviation of the
NARR precipitation data.

— The multi-model ensemble yields the
best correlation coefficient and the
smallest RMSE (the distance between
the reference point ('star’ in Fig. 3.5b)
and the model point corresponds to
RMSE in a Taylor diagram constructed
with standardized deviation and
correlation coefficient).



Section 3. Uncertainties in forcing data
Bias Correction

Evaluation of the simulated time series of the watershed-mean precipitation reveals
the presence of biases of varying degree in the simulated data.

In model hindcast experiments, these biases are regarded as model errors resulting
from incompleteness of model formulations.

* Inreality, some of these model errors are due to the biases in the large-scale
data used to drive these hindcast runs, however,

e Errorsin re-analysis data and their effects on the simulation errors are likely to
be small compared to model errors.

Used to drive hydrology model simulations, these model errors will be a major
source of errors (or uncertainties) in the simulated surface hydrology data such as
hydrograph and other hydrology parameters in the model.



Section 3. Uncertainties in the climate forcing data
Bias Correction

e Bias correction is performed in an attempt to alleviate the effects of the errors in (model)
data on the downstream calculations which utilizes the (model) data as inputs.

e Bias correction derives transfer functions in a control experiment to match certain
statistical properties of the model data with the reference data.

» Transfer functions (or correction factors) are derived for the present-day period in
which observations are available.

» Transfer functions (or correction factors) may be defined in a different form according
to variables (e.g. ratios between the control run data and the reference data for
precipitation; differences between the control run data and the reference data for
temperatures).

e There exist multiple bias correction methods
* Performance of various bias correction schemes must be throughtly examined.

e Limitations of bias correction approach:

* Bias correction assumes that models' bias characteristics remain similar for different
climate regimes. In reality, the model bias can vary according to climate state.

* The quality of bias correction depends on the quality of reference data.
* Bias correction is applied to correct a limited number of statistical properties.



Section 3. Uncertainties in forcing data
Bias Correction: Annual Cycle Matching
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Figure 3.6. Annual cycle in terms of daily and monthly means. Same as Figure 3.3 (b) and (c).
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Annual cycle matching may be the earliest and simplest bias correction method.

— Applied to either daily- or monthly climatology.

— Correction factors obtained for each day or month from a hindcast period is applied
to the same day or month in the simulated future time series.

— For shorter evaluation periods and/or arid regions, monthly climatology matching is
be preferred because the daily climatology generally suffer from the lack of samples.

Annual cycle matching methods result in eliminating the biases in the mean values from

the simulated data.



Section 3. Uncertainties in the climate forcing data — Bias correction
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Figure 3.7. Daily precipitation quantile map (the same as Figure 3.4(c).

Quantile mapping methods are based on matching quantile values between the PDFs of
the simulated and reference data.

Quantile mapping schemes match the frequency distribution of the simulated variables in
addition to the climatological totals.

Unlike the annual cycle mapping schemes, quantile mapping schemes alone do not
explicitly improve seasonal cycle of the simulated variables.



Section 3. Uncertainties in forcing data
Quantile maps of bias-corrected precipitation timeseries
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Figure 3.8. Quantile maps of bias corrected daily precipitation time series.

e Performance of bias correction schemes are examined.

1. The quantile maps of the bias-corrected time series are still different from observation,
but smaller than the raw data.

2. The quantile matching method generates time series that exactly match the quantile
map of the reference data; however

3. The ensemble of quantile mapped time series does not exactly match the observation.



Section 3. Uncertainties in forcing data
Comparison of the bias-corrected model data and reference data
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data (Fig. 3.9) shows that the effects of bias correction vary according to models.



Section 3. Uncertainties in the climate forcing data
Temporal variability evaluation: Uncorrected and Corrected data
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Figure 3.10. Evaluation of the temporal variability of the bias-corrected time series.

Both annual-cycle matching
methods reduce RMSE for
3 out of 4 models.

The quantile mapping
scheme reduces RMSE for
two models (ECPC &
WRFG) but increases the
other two models (CRCM &
HRM3).

— All schemes increase
RMSE for HRM3.

All three schemes reduce
the RMSE for the multi-
model ensemble.

The daily climatology
matching reduces RMSE
most among the three
correction schemes.

Bias correction tends to
improve model data, but
only by limited amounts.



Section 3. Uncertainties in the climate forcing data — continued
Application to gridded hydrology model

Some recent hydrology models are developed to resolve surface area using a grid

system (e.g., VIC, CHYM).

— Distributed hydrology models based on regular grid nest requires meteorological
input data at individual grid points (red circles in Figure 3.11).

The procedure for generating the bias-corrected
met forcing data for a bulk watershed can be
applied to prepare bias-corrected input data for
distributed hydrology models of M x N grids:

1. Interpolate the observed and model
meteorological data onto the hydrology
model grid points.

2. Apply the bias-correction procedures in the
previous section to individual time series.

3. Apply the bias-corrected meteorological
forcing data to distributed hydrology model
calculations.

DO = T

Figure 3.11. An example of grid-based
distributed hydrology model over northern
California including the Sacramento River
basin.



Section 3. Uncertainties in the climate forcing data — continued
Summary

Bias correction of the meteorological input data for hydrology simulation is necessary
to reduce the impact of model errors on simulating hydrologic properties.

— In typical climate change impact assessments based on one-way nested modeling
approach, upstream model errors are the sources of uncertainties in downstream
model results.

A number of bias correction methods are available
— Each method deals with specific statistical properties of the targeted time series.

In this example, three different methods are examined
— Monthly and daily climatology matching schemes
— Quantile mapping scheme

Evaluation of the bias-corrected time series using these three schemes are evaluated.

— All schemes generally improve the temporal variability of the uncorrected time
series.

— The efficiency of bias correction varies among models

— Judging from the temporal variability, simple climatology-matching schemes
perform as well as the quantile-mapping scheme.
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