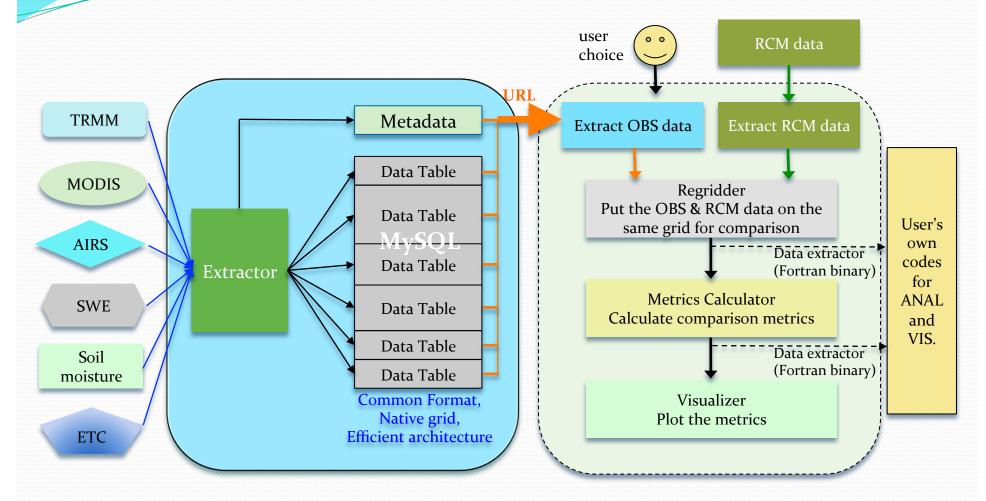
Evaluation of Multi-RCM CORDEX-Africa Hindcast using JPL Regional Climate Model Evaluation System (RCMES)

J. Kim¹, D.E. Waliser^{1,2}, C. Mattmann², C. Goodale², A. Hart², P. Zimdars² B. Hewitson³, C. Lennard³, A. Favre³, C. Jones⁴, G. Nikulin⁴ and Peter Lean^{2,*}

Seminar at Korean Meteorological Administration, September 19, 2011, Seoul, Korea

- ¹: Joint Institute for Regional Earth System Science and Engineering
- ²: Jet Propulsion Laboratory/California Institute of Technology
- 3: University of Cape Town, RSA
- 4: Rossby Center, Sweden
- *: Present affiliation: University of Reading, UK

Why Climate Model Evaluation?


- None of climate models is perfect; however,
 - Assessing the impact of climate change is crucial for sustainable development.
 - Climate models are the only tool for projecting future climate
- Regional-scale climate model [statistical or dynamical] data are particularly important for assessing the impact of climate change on various sectors.
 - Most assessment targets are characterized by strong regional-scale variability.
 - Uncertainties propagate according to model hierarchy:
 - Climate model errors directly propagate into assessment models.
 - Model evaluation is the key for model improvements and bias corrections.

JPL Regional Climate Model Evaluation System (RCMES)

- Reference data are the key part of model evaluation
 - Typical model evaluation is performed by comparing the simulated and reference data using statistical metrics.
 - Reference data are typically obtained through *direct/indirect observations*, analysis of observed data and/or observation-inferred assimilations.
 - Easy access to quality reference data can facilitate model evaluation efforts.
 - The lack of fine-scale reference datasets suitable is among the key difficulties in evaluating today's RCM simulations.
- In order to facilitate model evaluation work, especially for easy access to and use of remote sensing data from spaceborne sensors, RCMES has been under development via joint JPL-UCLA efforts in the past 1.5 years
 - RMCES is composed by two components:
 - Reference database (Regional Climate Model Evaluation Database: RCMED)
 - Evaluation toolkit (Regional Climate Model Evaluation Toolkit: RCMET)

RCMES

High-level technical architecture

Raw Data:

Various formats, Resolutions, Coverage

RCMED

(Regional Climate Model Evaluation Database)
A large scalable database to store data from
variety of sources in a common format

RCMET

(Regional Climate Model Evaluation Tool)
A library of codes for extracting data from
RCMED and model and for calculating
evaluation metrics

JPL Regional Climate Model Evaluation System (RCMES)

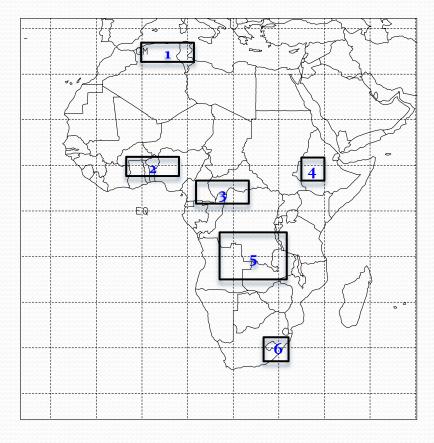
- RCMES is in the prototyping stage
- RCMES will be:
 - Efficient
 - Fast access to the reference datasets
 - User friendly
 - Intuitive and transferrable GUI
 - Flexible
 - Extractors for multiple data formats (netCDF, HDF, Grib, Ascii)
 - Extract partially processed data for users' own analysis
 - Expandable
 - Easy to add new data and/or analysis tool
 - Apache Hadoop and MySQL are used to provide scalable storage solution
 - Cloud-based architecture for storage and user interface is explored.
- Long-term goals include wider utilization of NASA remote sensing products, especially for evaluating fine-resolution climate model data.

Evaluation of the CORDEX-Africa Multi-RCM Hindcast

- The JPL-UCLA team is collaborating with scientists at UCT and Rossby Centre to apply RCMES to the CORDEX-Africa project
- This is the first application of RCMES
- Monthly data from 11-RCM 20-year (1989-2008) hindcast are obtained
 - Some models are excluded due to incomplete/missing data.
 - Evaluation periods are limited due to the coverage of reference datasets.
- Evaluations are performed for the monthly values of:
 - Precipitation, T2, T2Min, T2Max, Cloudiness
- Reference data used:
 - Precipitation: TRMM.v6 (1998-present, 0.25deg), CRU (1901-2006, 0.5deg)
 - T2, T2Min, T2Max: CRU (1901-2006, 0.5deg).
 - Cloudiness: MODIS retrieval (2001-present, 1deg).

RCMs and Variables Incorporated in the Evaluation Study

Institution	Model Variable	PRECIP	T _{MEAN}	T _{MIN}	T _{MAX}	Cloudiness
CNRM	ARPEGE51	X	X	X	X	X
DMI	HIRHIM					X
ICTP	RegCM ₃					
IES	CCLM	X	X	X	X	X
KNMI	RACM02.2b	X	X	X	X	X
MPI	REMO					
SMHI	RCA ₃₅	X	X	X	X	X
UCT	PRECIS	X	X	X	X	
UC	WRF311	X	X	X	X	
UM	MM ₅	X	X	X	X	
UQAM	CRCM5					
n/a	ENS	X	X	X	X	X

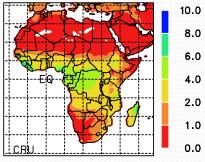

Precipitation vs. CRU: 7 RCMs

T2 fields vs. CRU: 7 RCMs

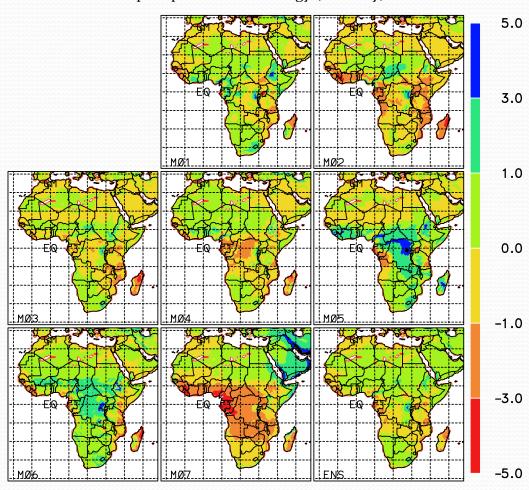
Cloudiness vs. MODIS: 5 RCMs

CORDEX-Africa Hindcast Domain

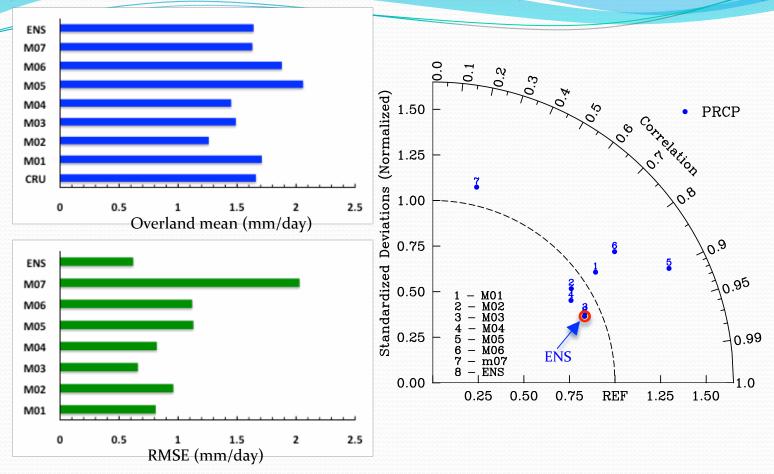
CORDEX-AFRICA DOMAIN: Ø,44DEG RE


- The CORDEX-Africa domain covers the African continent with a 0.44° resolution horizontal grid mesh.
 - All RCM data are interpolated onto the reference domain
- Six sub-regions are selected for investigating regions of interests.
 - 1. Western Mediterranean
 - 2. Western sub-Sahara
 - 3. Central sub-Sahara
 - 4. Upper Nile
 - 5. South-central sub-Sahara
 - 6. Eastern RSA

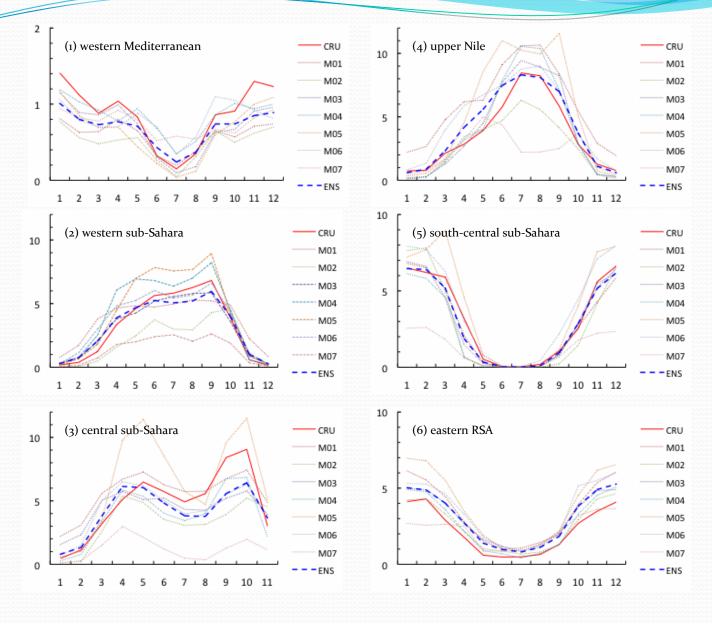
[1] Precipitation evaluation7 RCMs and their ensemble vs. CRU raingauge analysis


- 18 years: 1989-2006 [Limited by the length of the CRU data]
- Overland only
- Annual precipitation climatology
- Interannual variability in terms of temporal standard deviations

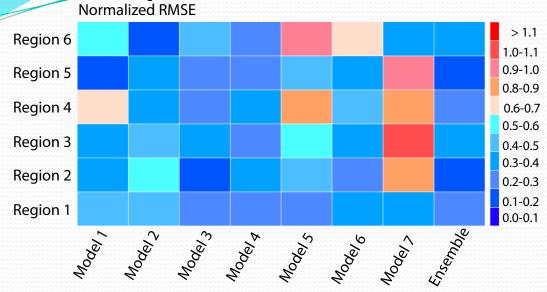
Annual overland precipitation climatology for 1989-2006



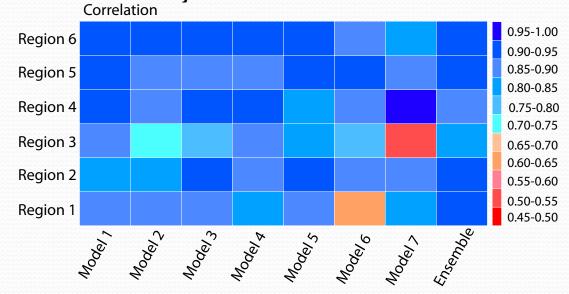
Bias: Annual-mean precipitation climatology (mm/day)



Spatial Variability of the Overland Precipitation Climatology

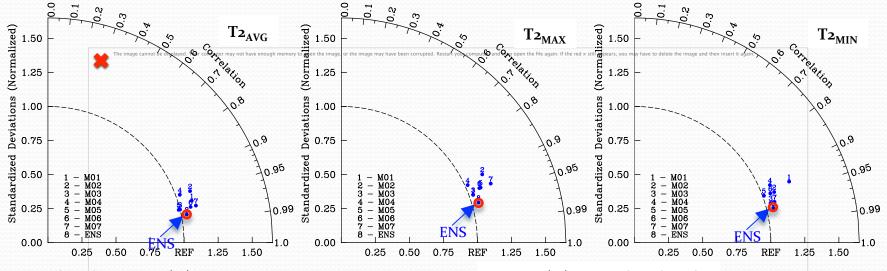


- Most RCMs yield reasonable spatial pattern correlation with the CRU analysis.
- Spatial variability (in terms of standard deviation) varies more widely than correlations.
- The model ensemble compares closely with the CRU analysis.
 - the *smallest bias and RMSE* (smaller than any model in the ensemble)
 - the highest spatial pattern correlation
 - Spatial variability is smaller than most models, but still comparable to the CRU data.


Precipitation Annual Cycle (mm/day) in the 6 sub-Regions

PR Ann Cycle: Normalized RMSE (RMSE/MEAN_{CRU})

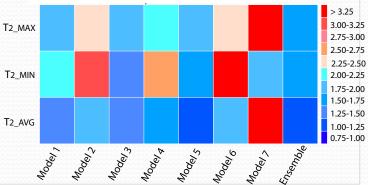
PR Annual cycle: Correlation with the CRU data


- Compare the performance of multiple models using "portrait diagram".
- Model performances vary widely according to the region.
- The model ensemble is among the smallest in RMSE and the highest in correlation with the CRUderived annual cycle.

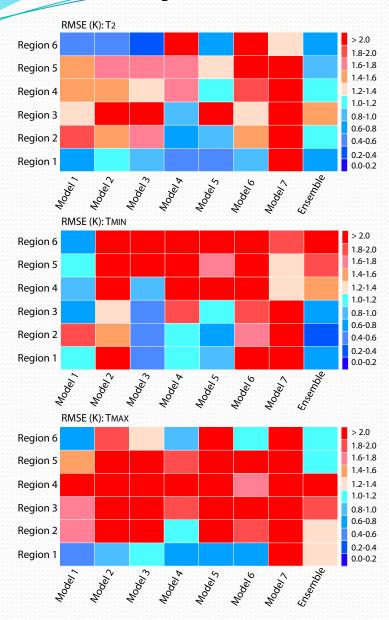
[2] 2-m air temperature fields evaluation7 RCMs and their ensemble vs. CRU surface station analysis

- 18 years: 1989-2006
- Overland only
- Annual T2Mean, T2Min, and T2Max climatology
- Interannual variability in terms of the temporal standard deviations

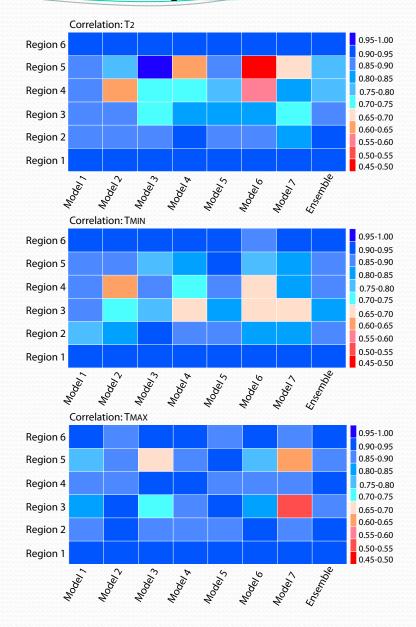
Spatial Variability of the T₂ Climatology


(vs. CRU: 1989-2006)

Overland-means (K)

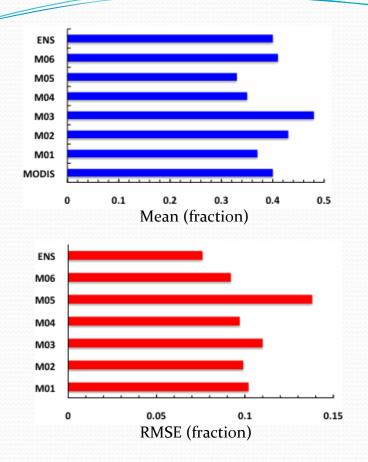

Data	T2_AVG	T2_MIN	T2_MAX
CRU	297	290	303
Moı	296	290	303
Mo2	297	292	303
Моз	296	290	302
Mo4	297	291	304
Mo5	296	290	303
Mo6	298	293	304
Mo7	293	288	298
ENS	296	290	302

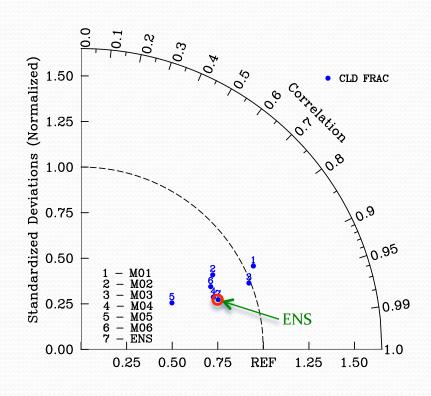
RMSE (K): Overland only



- The simulated T2 fields compares more closely with CRU than precipitation
- Model ensemble generally performs well compared to individual models.

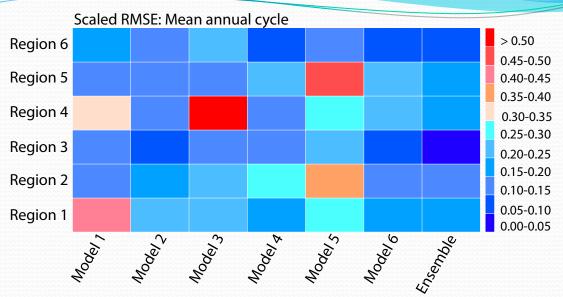
Annual Cycle RMSE (K)

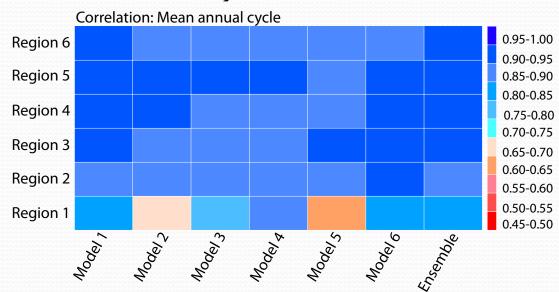

Annual Cycle Correlation



[3] Cloudiness Six RCMs and their ensemble vs. MODIS retrievals

- 8 years: 2001-2008
- MODIS cloudiness data, 1°x1°, Global coverage


Overland Cloudiness Climatology (2001-2008)



- Model errors range from -17.5% to +20%
- All models generate good spatial pattern (spatial corr. coef. > 0.9 vs. the MODIS data).
- The model ensemble generally agree more closely with the REF data than individual models.
 - the smallest bias and RMSE against the MODIS data.
 - the highest spatial correlation with the MODIS data.
 - Model ensemble does not improve spatial variability.

Cloudiness Ann Cycle Normalized RMSE (RMSE/MEAN_{MODIS})

Cloudiness Annual cycle Correlation with the MODIS data

Summary

- Monthly precipitation, T_2 's, and cloudiness from RCMs participating in the CORDEX-Africa experiment are evaluated using RCMES.
 - All RCMs successfully simulate qualitative features of the observed climatology.
 - Performance of individual models vary widely.
 - Ensembles of all RCMs are generally closer to the reference data than individual RCM, especially in the climatological means.
- Care must be taken in estimating temporal variability using model ensembles
 - Model ensemble may systematically underestimate temporal variability.
 - Model ensemble yields among the highest spatial pattern correlation with REF.
- Use of intuitive visualization tool such as *Taylor diagram* and *Portrait diagram* facilitates the evaluation of relative performance of multiple models for multiple properties.
 - Taylor diagrams can present two properties (standard deviation and correlations) widely used to measure variability.
- Future development of RCMES will emphasize the use of remote sensing data for evaluating fine-resolution simulations.