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SciSpark are to:

The capabilities of the SciSpark compute cluster will include:

parallel 1/0 back into cluster memory;

Summary
ightning fast Big Data technology called SciSpark based on Apache
Spark. Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory
“spilling” to disk only as needed, and so outperforms the disk-based Apache Hadoop by 100x in
memory and by 10x on disk, and makes iterative algorithms feasible. This 2"d generation capability for NASA’s
Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and
extend to quite sophisticated iterative algorithms such as machine-learning (ML) based clustering of temperature
PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes (MCC’s). The goals of
(a) Decrease the time to compute comparison statistics and plots from minutes to seconds; (b)
Allow for interactive exploration of time-series properties over seasons and years; (c) Decrease the time for satellite
data ingestion into RCMES to hours; (d) Allow for Level-2 comparisons with higher-order statistics and/or full PDF’s
in minutes to hours; and (e) Move RCMES into a near real time decision-making platform.

1. On-demand data discovery and ingest for satellite (A-Train) observations and model variables (from CORDEX and
CMIP5) by using OPeNDAP and webification (w10n) to subset arrays out of remote or local HDF and netCDF files;
2. Use of HDFS, Cassandra, and SparkSQL as a distributed database to cache variables/grids for later reuse with fast,

3. Parallel computation in memory of model diagnostics and decade-scale comparison statistics by partitioning work
across the SciSpark cluster by time period, spatial region, and variable;

4. An integrated browser Ul that provides a “live” code window (python & scala) to interact with the cluster,
interactive visualizations using D3 and webGL, and search forms to discover & ingest new variables.

The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Spark: In-Memory Map-Reduce
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— Intermediate results persisted in memory
— User controls the partitioning to optimize data placement

« New RDD’s computed using pipeline of transformations
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— Resilience: Lost shards can be recomputed from saved pipeline
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* Rich set of operators on RDD’s
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— Pipeline of Transformations implicitly define a New RDD

— RDD computed only when needed (Action): Count, Collect, Reduce
« Persistence Hierarchy (SaveTo)

 Implicit Pipelined RDD, In-Memory, On fast SSD, On Hard Disk

map(f:T=1U) RDD[T] = RDD|U]
filter(f : T=Bool) : RDD[T]= RDDI[T]
flatMap(f : T = Seq[U]) : RDD[T] = RDD[U]
sample(fraction : Float) RDDI[T] = RDDIT] (Deterministic sampling)
groupByKey() RDDI[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V) =>V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union|) (RDD[T],RDD[T]) = RDDIT]
join() (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
crossProduct() (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f : V= W) RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDD[(K, V)] = RDDI[(K, V)]
partitionBy(p : Partitioner[K]) : RDDI[(K, V)] = RDD[(K, V)]
count() RDD[T] = Long
collect() RDDI[T] = Seq[T]
Actions reduce(f : (T,T) = T) RDD[T] =T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.
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SciSpark Contributions

« Parallel Ingest of Science Data from HDF & netCDF
— Using OPeNDAP and Webification URL’s to slice arrays
« Scientific RDD'’s for large arrays (sRDD’s)
— Bundles of 2,3,4-dimensional arrays keyed by name
— Partitioned by time and/or space
* More Operators
— ArraySplit by time and space, custom statistics, etc.

« Sophisticated Statistics and Machine Learning
— Higher-Order Statistics (skewness, kurtosis)
— Multivariate PDF’s and histograms
— Clustering, Graph algorithms
« Partitioned Variable Cache
— Store named arrays in distributed Cassandra db or HDFS

* Interactive Statistics and Plots
— “Live” code window submits jobs to SciSpark Cluster
— Incremental statistics and plots “stream” into the browser Ul

The SciSpark Cluster

Apache Spark is an in-memory map-reduce platform. http://spark.apache.org/

Spark features include:
+  Stream processing J\Z %

« SQL Query Syntax Spr’( M E SO3

* Integration with Apache Mesos cluster manager

+ Spark grew out of the Berkeley AMP Lab (Mattmann is on steering com)

-~ Algorithms, Machines and People, investment from 80+ industry partners, DARPA XDATA
and NSF CISE Expeditions in Computing

SciSpark is a deployment used to develop scientific Spark processing
workflows.

The SciSpark test cluster provides:
« Multiple nodes for parallel computation (4 nodes, 32 cores)
+ Spark processing environment (Python, Scala, Java)
« Distributed file system (HDFS, Cassandra)

+ Apache Mesos cluster manager

Credit: Mike Starch

Parallel Clustering & PDF Generation
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data is prepared by taking a lat/Ing grid,
one per day for a time period e.g., 33 years
of January or 1023 days. Mean is
computed for all values for each cell in the
lat/Ing grid over the time period and then
the mean is subtracted from each cell value
to produce anomalies, High/low over time
period is also computed and used to
determine a "bin size" of uniform step
between high/low.
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RCMES v2.0 - High-Level Architecture
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Sample File: Sample Code: Credit: Mazi Boustani
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Figure 1. Two scenarios demonstrating intelligent data caching and access in
SciSpark. A) a multi-stage operation to generate a time split of regridded data, B) a
multi-stage operation to select climate parameters from Shark, to cluster by deviation
from mean value, and then to output the first 10 clusters sorted by size.

Progress & Plans

SciSpark Web Interface
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Set up test compute cluster
— Installed Mesos, Spark, Cassandra

Software Prototypes
— Ingest global station data in CSV format, exercise SparkSQL, stats
— Integrated code for reading arrays from netCDF, HDF, and DAP

Architecture & Design
— Designing data structures for scientific RDD’s

— Challenge: Interoperate between Python/numpy arrays and Java/Scala
arrays (format conversion)

— Prototyping Cassandra as key/value store for named arrays
Next Steps
— Reproduce prior RCMES model diagnosis runs in SciSpark paradigm
— Quantify speedups
— Implement custom statistics algorithms and “scale up” the cluster
— Develop & Integrate the browser Ul: live code, interactive viz.




