SciSpark: Highly Interactive & Scalable
Model Evaluation and Climate Metrics

Brian Wilson, Chris Mattmann, Duane Waliser, Jinwon Kim, Paul Loikith,

Huikyo Lee, Lewis John McGibbney, Maziyar Boustani, Michael Starch, Kim Whitehall

Jet Propulsion Laboratory / California Institute of Technology

Under a NASA AIST grant, we are developing a

computation,

SciSpark are to:

The capabilities of the SciSpark compute cluster will include:

parallel 1/0 back into cluster memory;

Summary
ightning fast Big Data technology called SciSpark based on Apache
Spark. Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory
“spilling” to disk only as needed, and so outperforms the disk-based Apache Hadoop by 100x in
memory and by 10x on disk, and makes iterative algorithms feasible. This 2"d generation capability for NASA’s
Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and
extend to quite sophisticated iterative algorithms such as machine-learning (ML) based clustering of temperature
PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes (MCC’s). The goals of
(a) Decrease the time to compute comparison statistics and plots from minutes to seconds; (b)
Allow for interactive exploration of time-series properties over seasons and years; (c) Decrease the time for satellite
data ingestion into RCMES to hours; (d) Allow for Level-2 comparisons with higher-order statistics and/or full PDF’s
in minutes to hours; and (e) Move RCMES into a near real time decision-making platform.

1. On-demand data discovery and ingest for satellite (A-Train) observations and model variables (from CORDEX and
CMIP5) by using OPeNDAP and webification (w10n) to subset arrays out of remote or local HDF and netCDF files;
2. Use of HDFS, Cassandra, and SparkSQL as a distributed database to cache variables/grids for later reuse with fast,

3. Parallel computation in memory of model diagnostics and decade-scale comparison statistics by partitioning work
across the SciSpark cluster by time period, spatial region, and variable;

4. An integrated browser Ul that provides a “live” code window (python & scala) to interact with the cluster,
interactive visualizations using D3 and webGL, and search forms to discover & ingest new variables.

The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Spark: In-Memory Map-Reduce

« Datasets partitioned across a compute cluster by key Q
— Shard by time, space, and/or variable /\

O
A

« RDD: Resilient Distributed Dataset Scientists / Decision Makers/ __ [Nt s Y N e A —
Educators / Students - | S S T N o
— Fault-tolerant, parallel data structures Sci Spark User Interface s o o, (¥,

Sk Wb Inariace

— Intermediate results persisted in memory
— User controls the partitioning to optimize data placement

« New RDD’s computed using pipeline of transformations

Data Scientists /

— Resilience: Lost shards can be recomputed from saved pipeline

! 1 1.5 2
- - mm/day
S
;::w =
L | |
s e e Wl e e Data Driven Documents D3 jS
- 2L |
i (]

Expert Usrs

* Rich set of operators on RDD’s

| N l
Map Save /

— Parallel: Map, Filter, Sample, PartitionBy, Sort Sc'e"t':'DcF?/DD Creatlonscala
— Reduce: GroupByKey, ReduceByKey, Count, Collect, Union, Join /Shafé /fp“ﬂ\ Cache
« Computation is implicit (Lazy) until answers needed hogg N;gggF S%I;’;lgy %‘;“;.Sx é"R-e—g_rid“i é-_l\lle—tr_i(;s-—i SH L RK

— Pipeline of Transformations implicitly define a New RDD

— RDD computed only when needed (Action): Count, Collect, Reduce
« Persistence Hierarchy (SaveTo)

 Implicit Pipelined RDD, In-Memory, On fast SSD, On Hard Disk

map(f:T=1U) RDD[T] = RDD|U]
filter(f : T=Bool) : RDD[T]= RDDI[T]
flatMap(f : T = Seq[U]) : RDD[T] = RDD[U]
sample(fraction : Float) RDDI[T] = RDDIT] (Deterministic sampling)
groupByKey() RDDI[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V) =>V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union|) (RDD[T],RDD[T]) = RDDIT]
join() (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
crossProduct() (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f : V= W) RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDD[(K, V)] = RDDI[(K, V)]
partitionBy(p : Partitioner[K]) : RDDI[(K, V)] = RDD[(K, V)]
count() RDD[T] = Long
collect() RDDI[T] = Seq[T]
Actions reduce(f : (T,T) = T) RDD[T] =T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Spa

Lightning-Fast Cluster Computing

Apache Spark

Cancer Genomics, Energy Debugging, Smart Buildings

Sample
Clean

BlinkDB
Spark

MLBase

SparkR

Streaming SparkSQL MLIib

Apache Spark (core)

Velox Model Serving

Tachyon
SIEIES S5

Yarn

Apache Mesos

SciSpark Contributions

« Parallel Ingest of Science Data from HDF & netCDF
— Using OPeNDAP and Webification URL’s to slice arrays
« Scientific RDD'’s for large arrays (sRDD’s)
— Bundles of 2,3,4-dimensional arrays keyed by name
— Partitioned by time and/or space
* More Operators
— ArraySplit by time and space, custom statistics, etc.

« Sophisticated Statistics and Machine Learning
— Higher-Order Statistics (skewness, kurtosis)
— Multivariate PDF’s and histograms
— Clustering, Graph algorithms
« Partitioned Variable Cache
— Store named arrays in distributed Cassandra db or HDFS

* Interactive Statistics and Plots
— “Live” code window submits jobs to SciSpark Cluster
— Incremental statistics and plots “stream” into the browser Ul

The SciSpark Cluster

Apache Spark is an in-memory map-reduce platform. http://spark.apache.org/

Spark features include:
+ Stream processing J\Z %

« SQL Query Syntax Spr’(M E SO3

* Integration with Apache Mesos cluster manager

+ Spark grew out of the Berkeley AMP Lab (Mattmann is on steering com)

-~ Algorithms, Machines and People, investment from 80+ industry partners, DARPA XDATA
and NSF CISE Expeditions in Computing

SciSpark is a deployment used to develop scientific Spark processing
workflows.

The SciSpark test cluster provides:
« Multiple nodes for parallel computation (4 nodes, 32 cores)
+ Spark processing environment (Python, Scala, Java)
« Distributed file system (HDFS, Cassandra)

+ Apache Mesos cluster manager

Credit: Mike Starch

Parallel Clustering & PDF Generation

Day #1 Day #1023 o
parameter anomalies

_ e.g. Temp each a value
range of uniform step
from the std dev (from

mean) of valuesofa
climate param, e.g., 3

/ temp b=
>

One cube for each day in 1 to temporal range e.g., 1 to all 152
January days in 33 years, or 33 * 31 = 1023 days

Cluster
Hierarchy

J_I:
:’J/

longitude

latitude
—>

_— >
longitude

Q

data is prepared by taking a lat/Ing grid,
one per day for a time period e.g., 33 years
of January or 1023 days. Mean is
computed for all values for each cell in the
lat/Ing grid over the time period and then
the mean is subtracted from each cell value
to produce anomalies, High/low over time
period is also computed and used to
determine a "bin size" of uniform step
between high/low.

©

The histograms comprising the # of days

that have a particular std dev value range

over the time period for each grid cell are O O
computed, and are then clustered via K-

means clustering to produce cells with low variance positive
similar overall value distributions over the skewness

time period.

Clusters are then
classified according to
the types of PDFs they
demonstrate e.g., low
variance, positive
skewness, and then
analyzed by their
geospatial cell/area

Similar clusters of the
binned distribution,
showing parameter

temperature anomalies

RCMES v2.0 - High-Level Architecture

Other Data Centers }

______ User e
{ (ESG, DAAC, ExArch Network) 1 input &
— : -
UR
. | Extract OBS Extract model
TRMM / *» Metadata | s data
MODIS Regridder
™ (Put the OBS & model data on the
same time/space grid) J
AIRS ~J\ I
/ Data extractor
CERES / (Binary or netCDF)
Metrics Calculator
Soil (Calculate evaluation metrics)
moisture ,
ommon Format, *
“;tf:ﬁ":‘:n"‘t‘" Visualizer
e \ (Plot the metrics) /
Raw Data: RCMED RCMET
Various sources, (Regional Climate Model Evaluation Database) (Regional Climate Model Evaluation Tool)
formats, A large scalable database to store data from A library of codes for extracting data from
Resolutions, variety of sources in a common format RCMED and model and for calculating
Coverage evaluation metrics
Sample File: Sample Code: Credit: Mazi Boustani

Valuef@,
Value®l1,
ValueB2,
ValueB3,
ValueB4,
ValueB5,
Value@6,
ValueB7,
Value@8,
ValueB9,
Valuel@,
Valuell,
Valuel2,
Valuel3,
Valuel4d,
Valuel5,
Valueléb,
Valuel?7,
Valuels8,
Valuel9,
Value2@,
Value2l

Valuel2,
Valuel3,2
Valuel4,

NN b el bl b bl i i el il e OO0 DD @
W= O OS] oOTD EWN =0 WSO WU B W) e

VoW

S ————

/" 00DT-
| based ETL '—>
into HDFS

Spllt by Time \‘

>
\\2‘:f;:fri//

in-memory
node local or replicated

HDFS/replicated spinning disk or SSD

e ——a,

/" Select lat, ™ “Cluster values on -~ "Top 10
. sorted
! Ing,value from \ mean, output b
Shal'k over NA Clusters USters y

cl
ea

n1mem0w
node local or replicated

’

HDFS/replicated spinning disk or SSD

in-memory
node local or replicated

B)

Figure 1. Two scenarios demonstrating intelligent data caching and access in
SciSpark. A) a multi-stage operation to generate a time split of regridded data, B) a
multi-stage operation to select climate parameters from Shark, to cluster by deviation
from mean value, and then to output the first 10 clusters sorted by size.

Progress & Plans

SciSpark Web Interface
QO X) @)
val postIDTags = postsXML.flatMap { line =» @ t?
val idTagRegex = "Id=\"(\\d+)\".+Tags=\"([*\"]+)\"".r xJ«E iz
val tagRegex = "&1t;([*&]+)>".r e %
&
idTagRegex.findFirstMatchIn(line) match { ,,,:i "—_ﬂm
case None => None @ @$
Some(m) => { i ;@,'!.L.Q, R
val postID = m.group(1).toInt Temperature|Latitude |Longitude Temperature|Latitude [Longitude | <D, @m'”
val tagsString = m.group(2) -30 -400 |-3995 -30 -400 |-3995 m-s'm m::m;
val tags = tagRegex.findAllMatchIn(tagsString).map(_.group(1)).tolist -30 -400 [-3995 -30 -400 |[-3995 ¢) @
if (tags.size »= 4) tags.map((postID,_)) else None -30 -400 |-3995 -30 -400 |-3995 $
} } -30 -400 [-3995 -30 -400 |-3995 ¢
Run #1 Run #2 Show Provenance
}
Create Scientific RDD HDFS \ Shark OPeNDAP w10n\
Spatial Constraints Temporal Constraints ETL
- file://Ipath/to/netcdf/fil I Load via O0DT I
‘.?::::' Regrid ISelect Metrﬂv” Perform Metric I bt b —
ﬁiim hdfs//path/to/netcdf/fie | | Lood via HOFS |
nnnnnn
Yy

Set up test compute cluster
— Installed Mesos, Spark, Cassandra

Software Prototypes
— Ingest global station data in CSV format, exercise SparkSQL, stats
— Integrated code for reading arrays from netCDF, HDF, and DAP

Architecture & Design
— Designing data structures for scientific RDD’s

— Challenge: Interoperate between Python/numpy arrays and Java/Scala
arrays (format conversion)

— Prototyping Cassandra as key/value store for named arrays
Next Steps
— Reproduce prior RCMES model diagnosis runs in SciSpark paradigm
— Quantify speedups
— Implement custom statistics algorithms and “scale up” the cluster
— Develop & Integrate the browser Ul: live code, interactive viz.

