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Summary	
  

Under	
  a	
  NASA	
  AIST	
  grant,	
  we	
  are	
  developing	
  a	
  lightning	
  fast	
  Big	
  Data	
  technology	
  called	
  SciSpark	
  based	
  on	
  Apache	
  
Spark.	
   	
  Spark	
  implements	
  the	
  map-­‐reduce	
  paradigm	
  for	
  parallel	
  compu6ng	
  on	
  a	
  cluster,	
  but	
  emphasizes	
  in-­‐memory	
  
computa6on,	
   “spilling”	
   to	
   disk	
   only	
   as	
   needed,	
   and	
   so	
   outperforms	
   the	
   disk-­‐based	
   Apache	
   Hadoop	
   by	
   100x	
   in	
  
memory	
   and	
   by	
   10x	
   on	
   disk,	
   and	
   makes	
   itera6ve	
   algorithms	
   feasible.	
   This	
   2nd	
   genera6on	
   capability	
   for	
   NASA’s	
  
Regional	
  Climate	
  Model	
  Evalua6on	
  System	
  (RCMES)	
  will	
  compute	
  simple	
  climate	
  metrics	
  at	
  interac6ve	
  speeds,	
  and	
  
extend	
   to	
  quite	
   sophis6cated	
   itera6ve	
  algorithms	
  such	
  as	
  machine-­‐learning	
   (ML)	
  based	
  clustering	
  of	
   temperature	
  
PDFs,	
   and	
   even	
   graph-­‐based	
   algorithms	
   for	
   searching	
   for	
  Mesocale	
   Convec6ve	
   Complexes	
   (MCC’s).	
   The	
   goals	
   of	
  
SciSpark	
   are	
   to:	
   	
   (a)	
  Decrease	
   the	
  6me	
   to	
   compute	
   comparison	
   sta6s6cs	
   and	
  plots	
   from	
  minutes	
   to	
   seconds;	
   (b)	
  
Allow	
  for	
  interac6ve	
  explora6on	
  of	
  6me-­‐series	
  proper6es	
  over	
  seasons	
  and	
  years;	
  (c)	
  Decrease	
  the	
  6me	
  for	
  satellite	
  
data	
  inges6on	
  into	
  RCMES	
  to	
  hours;	
  (d)	
  Allow	
  for	
  Level-­‐2	
  comparisons	
  with	
  higher-­‐order	
  sta6s6cs	
  and/or	
  full	
  PDF’s	
  
in	
  minutes	
  to	
  hours;	
  and	
  (e)	
  Move	
  RCMES	
  into	
  a	
  near	
  real	
  6me	
  decision-­‐making	
  pla[orm.	
  
The	
  capabili6es	
  of	
  the	
  SciSpark	
  compute	
  cluster	
  will	
  include:	
  
1. 	
  On-­‐demand	
  data	
  discovery	
  and	
  ingest	
  for	
  satellite	
  (A-­‐Train)	
  observa6ons	
  and	
  model	
  variables	
  (from	
  CORDEX	
  and	
  
CMIP5)	
  by	
  using	
  OPeNDAP	
  and	
  webifica6on	
  (w10n)	
  to	
  subset	
  arrays	
  out	
  of	
  remote	
  or	
  local	
  HDF	
  and	
  netCDF	
  files;	
  
2. 	
  Use	
  of	
  HDFS,	
  Cassandra,	
  and	
  SparkSQL	
  as	
  a	
  distributed	
  database	
  to	
  cache	
  variables/grids	
  for	
  later	
  reuse	
  with	
  fast,	
  
parallel	
  I/O	
  back	
  into	
  cluster	
  memory;	
  
3. 	
  Parallel	
  computa6on	
  in	
  memory	
  of	
  model	
  diagnos6cs	
  and	
  decade-­‐scale	
  comparison	
  sta6s6cs	
  by	
  par66oning	
  work	
  
across	
  the	
  SciSpark	
  cluster	
  by	
  6me	
  period,	
  spa6al	
  region,	
  and	
  variable;	
  
4. 	
  An	
  integrated	
  browser	
  UI	
  that	
  provides	
  a	
  “live”	
  code	
  window	
  (python	
  &	
  scala)	
  to	
  interact	
  with	
  the	
  cluster,	
  
interac6ve	
  visualiza6ons	
  using	
  D3	
  and	
  webGL,	
  and	
  search	
  forms	
  to	
  discover	
  &	
  ingest	
  new	
  variables.	
  

The	
  research	
  described	
  here	
  was	
  carried	
  out	
  at	
  the	
  Jet	
  Propulsion	
  Laboratory,	
  California	
  Ins;tute	
  of	
  Technology,	
  under	
  a	
  contract	
  with	
  the	
  Na;onal	
  
Aeronau;cs	
  and	
  Space	
  Administra;on.	
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Spark:  In-Memory Map-Reduce 
•  Datasets partitioned across a compute cluster by key 

–  Shard by time, space, and/or variable 
•  RDD:  Resilient Distributed Dataset 

–  Fault-tolerant, parallel data structures 
–  Intermediate results persisted in memory 
–  User controls the partitioning to optimize data placement 

•  New RDD’s computed using pipeline of transformations 
–  Resilience:  Lost shards can be recomputed from saved pipeline 

•  Rich set of operators on RDD’s 
–  Parallel:  Map, Filter, Sample, PartitionBy, Sort 
–  Reduce:  GroupByKey, ReduceByKey, Count, Collect, Union, Join 

•  Computation is implicit (Lazy) until answers needed 
–  Pipeline of Transformations implicitly define a New RDD 
–  RDD computed only when needed (Action):  Count, Collect, Reduce 

•  Persistence Hierarchy (SaveTo) 
•  Implicit Pipelined RDD, In-Memory, On fast SSD, On Hard Disk 

•  Set up test compute cluster 
–  Installed Mesos, Spark, Cassandra 

•  Software Prototypes 
–  Ingest global station data in CSV format, exercise SparkSQL, stats  
–  Integrated code for reading arrays from netCDF, HDF, and DAP 

•  Architecture & Design 
–  Designing data structures for scientific RDD’s 
–  Challenge:  Interoperate between Python/numpy arrays and Java/Scala 

arrays (format conversion)  
–  Prototyping Cassandra as key/value store for named arrays 

•  Next Steps 
–  Reproduce prior RCMES model diagnosis runs in SciSpark paradigm 
–  Quantify speedups 
–  Implement custom statistics algorithms and “scale up” the cluster 
–  Develop & Integrate the browser UI:  live code, interactive viz.  

Progress & Plans 
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model skill varies strongly for metrics. UC and UCT that

exhibit the largest bias (Fig. 2k) also yield large RMSE

(Fig. 2l); however, DMI, which shows relatively small
bias, is one of the two that show the largest RMSE. All

RCMs also consistently yield higher skill in simulating

precipitation distribution over land surfaces for winter than
for summer (Fig. 3a).

The ENS bias (Fig. 4a) is characterized by wet (dry)

biases in the climatologically dry (wet) regions. This indi-
cates a weakness in representing the precipitation contrast

across the African landscape that would have deleterious

effects in representing everything from regional atmospheric
circulation to the coupling with land and vegetation pro-

cesses. To consider model biases in relation to typical

anomalous conditions, we normalize the ENS bias by the
interannual variability of the CRU precipitation over the

18-year period (rt). The ± 1rt range approximately coin-

cides with the 68 % CI. In this case, the values remain
within the ±1 range over most of Africa (Fig. 4b), i.e., the

magnitude of the ENS bias is less than the local interannual

variability. To consider the systematic bias relative to the
expected precipitation values, the ENS bias is normalized by

the CRU annual-mean value (Fig. 4c). In this case, the

normalized ENS bias is \20 % of the CRU in the region
between 20!S and 10!N. Both normalized ENS biases are

large in the dry/marginally-dry regions including northern

Sahara, eastern Horn of Africa, and Arabia Peninsula.
Figure 5 presents the precipitation annual cycle (Lieb-

mann et al. 2012) in 10 out of the 21 sub-regions; two in
the northern Africa coast (Fig. 5a, f), four in the west

Africa (Fig. 5b–e) and four in the east Africa (Fig. 5g–j)

regions. An annual cycle plot for the entire 21 sub-regions
is presented in Supplemental Figure 2a, b (http://rcmes.jpl.

nasa.gov/publications/figures/Kim-Climate_Dynamics-2012

). Two green lines in Fig. 5a–j represent the ±1rt range

about the observation. All RCMs well simulate the sea-

sonality of precipitation, at least in its phase. Despite large

inter-RCM variations, ENS agrees reasonably with CRU in
most sub-regions. For the Mediterranean regions (Figs. 5a,

f), ENS is within the ±1rt range for most of the year. ENS

also closely agrees with CRU, both in seasonality and
magnitude, in most of the western Africa regions. Fidelity

of ENS in these east Africa regions is generally lower than

in the west coast region. In the Ethiopian Highlands and
Eastern Horn of Africa, all RCMs overestimate CRU and

ENS is outside the ±1rt range throughout a year. The

RCM skill in simulating the annual cycle is summarized for
all sub-regions using portrait diagrams. The normalized

RMSE (Fig. 5k) reveals that model skill varies according

to regions. RMSE remains\70 % of CRU for most RCMs
in most sub-regions except the northeastern Africa (eastern

Horn of Africa) and eastern Arabia Peninsula (R10, R20,

R21), coastal Western Sahara (R05), and eastern inland
Sahara (R06) regions. Most RCMs also simulate the phase

of the annual cycle measured by the correlation coeffi-

cients, reasonably well except for R10, R20, and R21
where RMSE is also large (Fig. 5l). Results in Fig. 5 show

that RCM skill varies according to regional climate as these

regions of poor performance are characterized by arid cli-
mate. Among these, the regions in northeastern Africa and

eastern Arabia Peninsula (regions 10, 20, and 21) are

affected by the Arabian-Sea monsoon (e.g., Segele et al.
2009). This may imply that in addition to shortcomings in

model physics for simulating precipitation in these dry
regions, the seasonal moisture flux from the Indian Ocean

associated with the movement of the Indian Ocean ITCZ

(Liebmann et al. 2012) may not be well represented via the
lateral boundary forcing. Evaluation of the large-scale

forcing will be subjects for future studies. Figure 5k, l also

show that ENS is consistently among the best performers.

(a) Precipitation (b) Temperature

Fig. 3 The standardized deviations and spatial pattern correlations between the CRU data and the individual model results for the boreal summer
(June–July–August; blue) and winter (December–January–February; red) over the land surface: a precipitation and b temperature
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eastern regions. This west-to-east gradient is reversed in
the Southern Hemisphere (SH) subtropical region. All

RCMs simulate these observed features, but with varying

fidelity (Supplemental Figure 1; http://rcmes.jpl.nasa.gov/
publications/figures/Kim-Climate_Dynamics-2012). The

model bias (Fig. 2a–j) varies strongly among these RCMs.

It also shows systematic regional variations across all or a
majority of these RCMs. All or most RCMs generate wet

biases in South Africa and sub-Sahara (Sahel) region and

dry biases in the northwestern Sahara, northern Madagas-
car Island, southeastern Africa coast, and interior Arabia

Peninsula regions. Precipitation biases in the tropics vary

among RCMs. The spatial variation of the annual-mean
precipitation is evaluated for the mean (Fig. 2k), pattern

correlation, and standardized deviation (Fig. 2l) over the

land area. The distance between REF and individual points
in the Taylor diagram corresponds to RMSE (Taylor 2001).

All RCMs well simulate the overland-mean precipitation

amount (Fig. 2k) with typical biases \10 % of CRU,
except UC and UCT. The spatial pattern agrees closely

with CRU with correlation coefficients 0.8–0.95 (Fig. 2l).

Most RCMs overestimate the magnitude of spatial vari-
ability (standardized deviations). ENS yields smaller

RMSE than all RCMs within ENS (Fig. 2l). The measured

mm/day

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l)

Fig. 2 The biases in the simulated annual-mean precipitation (mm/
day) against the CRU data for the individual models (a–j). The
overland-mean precipitation (k) and the spatial pattern correlations

and standardized deviations (l) with respect to the CRU data over the
land surface. The red square in (l) indicates the multi-RCM ensemble
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Extract, Transform and Load (ETL)

Sci Spark User Interface

SciSpark Contributions 
•  Parallel Ingest of Science Data from HDF & netCDF 

–  Using OPeNDAP and Webification URL’s to slice arrays 
•  Scientific RDD’s for large arrays (sRDD’s) 

–  Bundles of 2,3,4-dimensional arrays keyed by name 
–  Partitioned by time and/or space 

•  More Operators 
–  ArraySplit by time and space, custom statistics, etc. 

•  Sophisticated Statistics and Machine Learning 
–  Higher-Order Statistics (skewness, kurtosis) 
–  Multivariate PDF’s and histograms 
–  Clustering, Graph algorithms 

•  Partitioned Variable Cache 
–  Store named arrays in distributed Cassandra db or HDFS 

•  Interactive Statistics and Plots 
–  “Live” code window submits jobs to SciSpark Cluster 
–  Incremental statistics and plots “stream” into the browser UI 

Demo CSV File and PySpark Code 

Postgres,	
  
Cassandra	
  

and	
  
SparkSQL	
  

Parallel Clustering & PDF Generation 
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data is prepared by taking a lat/lng grid, 
one per day for a time period e.g., 33 years 
of January or 1023 days. Mean is 
computed for all values for each cell in the 
lat/lng grid over the time period and then 
the mean is subtracted from each cell value 
to produce anomalies, High/low over time 
period is also computed and used to 
determine a "bin size" of uniform step 
between high/low.
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One cube for each day in 1 to temporal range e.g., 1 to all 
January days in 33 years, or 33 * 31 = 1023 days

Day #1 Day #1023

1

2

The histograms comprising the # of days 
that have a particular std dev value range 
over the time period for each grid cell are 
computed, and are then clustered via K-
means clustering to produce cells with 
similar overall value distributions over the 
time period.

2
Cluster 

Hierarchy

low variance positive
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3

Clusters are then 
classified according to 
the types of PDFs they 
demonstrate e.g., low 
variance, positive 
skewness, and then 
analyzed by their 
geospatial cell/area


